Generic Rigidity Matroids with Dilworth Truncations
نویسنده
چکیده
We prove that the linear matroid that defines the generic rigidity of d-dimensional bodyrod-bar frameworks (i.e., structures consisting of disjoint bodies and rods mutually linked by bars) can be obtained from the union of ( d+1 2 ) copies of a graphic matroid by applying variants of Dilworth truncation operations nr times, where nr denotes the number of rods. This result leads to an alternative proof of Tay’s combinatorial characterizations of the generic rigidity of rod-bar frameworks and that of identified body-hinge frameworks.
منابع مشابه
Quotients of dilworth truncations
Sufficient conditions are given for an elementary quotient of the kth Dilworth truncation of a matroid M to be the kth Dilworth truncation of a quotient of M. As special cases, contractions of Dilworth truncations and principal truncations by connected flats of Dilworth truncations are characterised as Dilworth truncations of certain matroids. As an application of the theory it is shown that th...
متن کاملA Generalisation of the Matroid Lift Construction
This paper introduces a general matroid-theoretic construction which includes, as special cases, elementary lifts of matroids and bias matroids of biased graphs. To perform the construction on a matroid A/ , it is necessary (but not sufficient) to have a submodular function inducing M . Elementary lifts are obtained when the submodular function chosen is the rank function of M . We define what ...
متن کاملInfinitesimal Rigidity of Symmetric Bar-Joint Frameworks
We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal rigidity of arbitrary-dimensional bar-joint frameworks with Abelian point group symmetries. These matrices define new symmetry-adapted rigidity matroids on grouplabeled quotient graphs. Using these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional bar-joint frameworks wh...
متن کاملAbstract and Generic Rigidity in the Plane
AND GENERIC RIGIDITY IN THE PLANE SACHIN PATKAR, BRIGITTE SERVATIUS, AND K. V. SUBRAHMANYAM Abstract. We consider the concept of abstract 2–dimensional rigidity and provide necessary and sufficient conditions for a matroid to be an abstract rigidity matroid of a complete graph. This characterization is a natural extenWe consider the concept of abstract 2–dimensional rigidity and provide necessa...
متن کاملGain-Sparsity and Symmetry-Forced Rigidity in the Plane
We consider planar bar-and-joint frameworks with discrete point group symmetry in which the joint positions are as generic as possible subject to the symmetry constraint. We provide combinatorial characterizations for symmetry-forced rigidity of such structures with rotation symmetry or dihedral symmetry of order 2k with odd k, unifying and extending previous work on this subject. We also explo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 26 شماره
صفحات -
تاریخ انتشار 2012